The Dying Fibonacci Tree

نویسنده

  • BERNHARD GITTENBERGER
چکیده

If p = 1 then the resulting tree is the Fibonacci tree. It can easily be verified that the number of A’s in the n-th layer equals the n-th Fibonacci number Fn and the number of B’s equals Fn−1. Let An and Bn denote the number of A’s and B’s, respectively, in the first n layers of the tree. Then we have An An + Bn = ∑n i=1 Fi ∑n+1 i=2 Fi = 1 − Fn+1 − F1 ∑n+1 i=2 Fi Using the well known representation of the Fibonacci numbers Fn = (α n − α−n)/ √ 5 where α = (1 + √ 5)/2 we immediately get An An + Bn = 1 − α n+1 − α−n−1 − α + 1/α (α2(1 − αn) − α−1(1 − α−n))/(1 − α) ∼ 1 α = √ 5 − 1 2 (1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Access to Fibonacci Codes

A Wavelet tree allows direct access to the underlying file, resulting in the fact that the compressed file is not needed any more. We adapt, in this paper, the Wavelet tree to Fibonacci Codes, so that in addition to supporting direct access to the Fibonacci encoded file, we also increase the compression savings when compared to the original Fibonacci compressed file.

متن کامل

The Structure of Subword Graphs and Suffix Trees of Fibonacci Words

We use automata-theoretic approach to analyze properties of Fibonacci words. The directed acyclic subword graph (dawg) is a useful deterministic automaton accepting all suffixes of the word. We show that dawg’s of Fibonacci words have particularly simple structure. Our main result is a unifying framework for a large collection of relatively simple properties of Fibonacci words. The simple struc...

متن کامل

A Note on Minimum - Area Upward Drawingof Complete and Fibonacci

We study the area requirement for upward straight-line grid drawing of complete and Fibonacci tree. We prove that a complete tree with n nodes can be drawn in n + O(log n p n) area, and a Fibonacci tree with n nodes can be drawn in 1:17n + O(log n p n) area.

متن کامل

Algorithms for enumerating and counting D2CS of some graphs

We define a D2CS of a graph G to be a set S ⊆ V (G) with diam(G[S]) ≤ 2. A D2CS arises in connection with conditional coloring and radio-k-coloring of graphs. We study the problem of counting and enumerating D2CS of a graph. We first prove the following propositions: (1) Let f (k, h) be the number of D2CS of a complete k-ary tree of height h. Then f (k, h) = k k−1 (f (k + 1, 1) − 4)(k h−1 − 1) ...

متن کامل

A Note on Fibonacci Trees and the Zeckendorf Representation of Integers

The Fibonacci numbers are defined, as usual9 by the recurrence F0 = 0, F1 = 1, Fk = Fk_x +Fk.z, k> 1. The Fibonacci tree of order k, denoted Tk, can be constructed inductively as follows: If k = 0 or k = 1, the tree is simply the root 0. If k > 15 the root is Fk ; the left subtree is Tjc_1; and the right subtree is Tk_2 with all node numbers increased by Fk . TG is shown in Figure 1. For an ele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007